- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Lyons, David W. (2)
-
Appel, Paul (1)
-
Arnold, Jesse R. (1)
-
Heilman, Alexander J. (1)
-
Huber, Marcus (1)
-
Lyons, David W (1)
-
Mullican, Cristina (1)
-
Pivoluska, Matej (1)
-
Putnam, Jack D (1)
-
Rilatt, Adam (1)
-
Swogger, Ashley F. (1)
-
Vitagliano, Giuseppe (1)
-
Wertz, Ezekiel W. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present two results on multiqubit Werner states, defined to be those states that are invariant under the collective action of any given single-qubit unitary that acts simultaneously on all the qubits. Motivated by the desire to characterize entanglement properties of Werner states, we construct a basis for the real linear vector space of Werner invariant Hermitian operators on the Hilbert space of pure states; it follows that any mixed Werner state can be written as a mixture of these basis operators with unique coefficients. Continuing a study of ‘polygon diagram’ Werner states constructed in earlier work, with a goal to connect diagrams to entanglement properties, we consider a family of multiqubit states that generalize the singlet, and show that their 2-qubit reduced density matrices are separable.more » « less
-
Lyons, David W.; Arnold, Jesse R.; Swogger, Ashley F. (, Physical Review A)
-
Appel, Paul; Heilman, Alexander J.; Wertz, Ezekiel W.; Lyons, David W.; Huber, Marcus; Pivoluska, Matej; Vitagliano, Giuseppe (, Quantum)We introduce finite-function-encoding (FFE) states which encode arbitrary d -valued logic functions, i.e., multivariate functions over the ring of integers modulo d , and investigate some of their structural properties. We also point out some differences between polynomial and non-polynomial function encoding states: The former can be associated to graphical objects, that we dub tensor-edge hypergraphs (TEH), which are a generalization of hypergraphs with a tensor attached to each hyperedge encoding the coefficients of the different monomials. To complete the framework, we also introduce a notion of finite-function-encoding Pauli (FP) operators, which correspond to elements of what is known as the generalized symmetric group in mathematics. First, using this machinery, we study the stabilizer group associated to FFE states and observe how qudit hypergraph states introduced in Ref. \cite{2017PhRvA..95e2340S} admit stabilizers of a particularly simpler form. Afterwards, we investigate the classification of FFE states under local unitaries (LU), and, after showing the complexity of this problem, we focus on the case of bipartite states and especially on the classification under local FP operations (LFP). We find all LU and LFP classes for two qutrits and two ququarts and study several other special classes, pointing out the relation between maximally entangled FFE states and complex Butson-type Hadamard matrices. Our investigation showcases also the relation between the properties of FFE states, especially their LU classification, and the theory of finite rings over the integers.more » « less
An official website of the United States government
